1) Find all the eigenspaces of the matrix below (15 points)

$$\begin{bmatrix} -1 & -3 & 3 \\ 0 & -1 & 0 \\ 0 & -3 & 2 \end{bmatrix}$$

$$|xI - A| = \begin{vmatrix} x+1 & 3 & -3 \\ 0 & x+1 & 0 \\ 0 & 3 & x-2 \end{vmatrix} = (x+1) \begin{vmatrix} x+1 & 0 \\ 3 & x-2 \end{vmatrix} = (x+1)(x+1)(x-2)$$

For $\lambda = -1$ we get:

$$\begin{bmatrix} -1+1 & 3 & -3 \\ 0 & -1+1 & 0 \\ 0 & 3 & -1-2 \end{bmatrix} = \begin{bmatrix} 0 & 3 & -3 \\ 0 & 0 & 0 \\ 0 & 3 & -3 \end{bmatrix} \sim_{R} \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has eigenspace $span\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$

For $\lambda = 2$ we get:

$$\begin{bmatrix} 2+1 & 3 & -3 \\ 0 & 2+1 & 0 \\ 0 & 3 & 2-2 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -3 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \sim_R \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has eigenspace $span\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$.

2) Find the diagonalization of the matrix from the previous problem. (5 points) (If you couldn't solve the previous problem, make up an answer to answer this problem)

$$\begin{bmatrix} -1 & -3 & 3 \\ 0 & -1 & 0 \\ 0 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}^{-1}$$

3) Given the basis below, find an orthogonal basis for the same vector space. (10 points)

([1]		[-0.5])	
}	1	,	0.5	}	
(10		4	J	

4) Answer the following questions. (3 points each)

A) Let A be a 5×5 with eigenvalues 0, 0, 1, 2, 3. What is the maximum rank of A?

4

B) Let A be a 3×5 matrix whose nullity is 4. When row reduced, how many rows of zeroes are there?

2

C) Consider a system of 4 equations and 4 variables that has a unique solution. When row reduced, how many pivots does the corresponding matrix have?

4

D) Let A be a 6×6 matrix whose corresponding linear transformation T is onto. Is T one-to-one?

Yes

E) Let A be a 3×3 matrix whose corresponding linear transformation T is not one-to-one. What is the determinant of A?

0

5) Given the two bases and linear transformation below, draw the diagram that represents this information. (10 points)

$$B_{1} = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix} \right\}, B_{2} = \left\{ \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 0\\5 \end{bmatrix} \right\}, T\left(\begin{bmatrix} x_{1}\\x_{2} \end{bmatrix}_{B_{1}} \right) = \begin{bmatrix} x_{2}\\3x_{1} - x_{2} \end{bmatrix}_{B_{2}}$$

6) Find the product below. (10 points)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix}$$

 $\begin{bmatrix} -4 & 7 \\ -6 & 19 \end{bmatrix}$

7) Reduce the matrix below to reduced echelon form. (10 points)

[2	0	0	0	0]
0	0	1	2	6
Lo	1	3	4	1

[2	0	0	0	0]	[1	0	0	0	0]	[1	0	0	0	0]	[1	0	0	0	0]
0	0	1	2	6~	R 0	0	1	2	$6 \sim_{F}$	2 0	1	3	4	1 ~	R = 0	1	0	-2	-17
6	1	3	4	1		1	3	4	1		0	1	2	6		0	1	2	6

8) Find the product below. (5 points)

г - 1	0	0	0	ן0	г1	0	0	0	ך0	г1	2	2	2	ן2	
0	1	0	0	0	0	1	0	0	0	3	1	3	3	3	
0	0	1	0	0	0	0	1	2	0	4	4	1	4	4	
0	0	0	1	0	0	0	0	1	0	5	5	5	1	5	
Γ0	0	0	0	1	LO	0	0	0	1	L_6	6	6	6	1]	
			Г-	-1	-2	2	-2	-2	-	-21					
				3	1		3	3		3					
				14	14	ł	11	6		14					
				5	5		5	1		5					
			L	6	6		6	6		1 J					

9) Find the length of the vector below. (5 points)

$$\begin{bmatrix} 3\\4\\0\\12\end{bmatrix}$$

 $\sqrt{3^2 + 4^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$

10) Given system of equations below, write the corresponding matrix equation. (5 points)

$$x + 2y = 3$$
$$4x + 5y = 6$$
$$\begin{bmatrix} 1 & 2\\ 4 & 5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 3\\ 6 \end{bmatrix}$$

11) Find a formula for the pseudoinverse of the matrix below. (5 points)

[1	2]
3	4
L5	6

```
\left(\begin{bmatrix}1 & 3 & 5\\2 & 4 & 6\end{bmatrix}\begin{bmatrix}1 & 2\\3 & 4\\5 & 6\end{bmatrix}\right)^{-1}\begin{bmatrix}1 & 3 & 5\\2 & 4 & 6\end{bmatrix}
```

12) Given the information below about three bases B_1 , B_2 , B_3 , and two linear transformations T_1 and T_2 , find a formula for $[T_1]_{B_1}^{B_2}$. (5 points)

$$B_{1} = \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$$
$$B_{2} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \end{bmatrix} \right\}$$
$$B_{3} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$$
$$[T_{2} \circ T_{1}]_{S}^{S} = \left\{ \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$$
$$[T_{2}]_{B_{2}}^{B_{3}} = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \end{bmatrix} \right\}$$

 $\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 2 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

